Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Week 9 homework 2

Week 9 homework 2

Resources

Download Files

Definitions File

theory Defs
  imports "HOL-Data_Structures.Tree2"
  "HOL-Data_Structures.Cmp"
  "HOL-Data_Structures.List_Ins_Del"
begin

datatype color = Red | Black

type_synonym 'a rbt = "('a,color * nat)tree"

text \<open>

Define a function for accessing the new field:
\<close>

fun bh :: "'a rbt \<Rightarrow> nat" where
"bh Leaf = 0" |
"bh (Node l a (c,h) r) = h"


abbreviation R where "R l a h r \<equiv> Node l a (Red,h) r"
abbreviation B where "B l a h r \<equiv> Node l a (Black,h) r"

abbreviation rd where "rd l a r \<equiv> Node l a (Red,bh l) r"
abbreviation bk where "bk l a r \<equiv> Node l a (Black,Suc(bh l)) r"

end

Template File

theory Submission
  imports Defs
begin

definition insert :: "'a::linorder \<Rightarrow> 'a rbt \<Rightarrow> 'a rbt" where
"insert _ = undefined"

fun invh2 :: "'a rbt \<Rightarrow> bool" where
  "invh2 _ = undefined"

definition rbt :: "'a rbt \<Rightarrow> bool" where
  "rbt _ = undefined"

lemma inorder_insert:
  "sorted(inorder t) \<Longrightarrow> inorder(insert x t) = ins_list x (inorder t)"
  sorry

theorem rbt_insert: "rbt t \<Longrightarrow> rbt (insert x t)"
  sorry

end

Check File

theory Check
  imports Submission
begin

lemma inorder_insert:
  "sorted(inorder t) \<Longrightarrow> inorder(insert x t) = ins_list x (inorder t)"
  by(rule inorder_insert)

theorem rbt_insert: "rbt t \<Longrightarrow> rbt (insert x t)"
  by(rule rbt_insert)

end

Terms and Conditions