I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Complex_Main "HOL-Library.Tree" begin fun fib :: "nat \<Rightarrow> nat" where fib0: "fib 0 = 0" | fib1: "fib (Suc 0) = 1" | fib2: "fib (Suc (Suc n)) = fib (Suc n) + fib n" lemma f_alt_induct [consumes 1, case_names 1 2 rec]: assumes "n > 0" and "P (Suc 0)" "P 2" "\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc n) \<Longrightarrow> P (Suc (Suc n))" shows "P n" using assms(1) proof (induction n rule: fib.induct) case (3 n) thus ?case using assms by (cases n) (auto simp: eval_nat_numeral) qed (auto simp: \<open>P (Suc 0)\<close> \<open>P 2\<close>) end
theory Template imports Defs begin fun avl :: "'a tree \<Rightarrow> bool" where "avl _ = undefined" lemma fib_lowerbound: "n > 0 \<Longrightarrow> real (fib n) \<ge> 1.5 ^ n / 3" sorry lemma avl_two_bound: "avl t \<Longrightarrow> height t = n \<Longrightarrow> 2 ^ (n div 2) \<le> size1 t" sorry end
theory Check imports Template begin lemma fib_lowerbound: "n > 0 \<Longrightarrow> real (Defs.fib n) \<ge> 1.5 ^ n / 3" by(rule fib_lowerbound) lemma avl_two_bound: "avl t \<Longrightarrow> height t = n \<Longrightarrow> 2 ^ (n div 2) \<le> size1 t" by(rule avl_two_bound) end