Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

FDS Week 3 Homework

Week 3 homework.

Resources

Download Files

Definitions File

theory Defs
  imports "HOL-Library.Tree"
begin

fun isin :: "('a::linorder) tree \<Rightarrow> 'a \<Rightarrow> bool" where
"isin Leaf x = False" |
"isin (Node l a r) x =
  (if x < a then isin l x else
   if x > a then isin r x
   else True)"

fun ins :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"ins x Leaf = Node Leaf x Leaf" |
"ins x (Node l a r) =
  (if x < a then Node (ins x l) a r else
   if x > a then Node l a (ins x r)
   else Node l a r)"

end

Template File

theory Template
  imports Defs
begin

abbreviation bst_eq :: "('a::linorder) tree \<Rightarrow> bool" where
"bst_eq \<equiv> undefined"


lemma isin_bst_eq: "bst_eq t \<Longrightarrow> isin t x = (x \<in> set_tree t)"
  sorry



lemma bst_eq_ins: "bst_eq t \<Longrightarrow> bst_eq (ins x t)"
  sorry

fun ins_eq :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree"
  where
"ins_eq _ _= undefined"


lemma bst_eq_ins_eq: "bst_eq t \<Longrightarrow> bst_eq (ins_eq x t)"
  sorry

fun count_tree :: "'a \<Rightarrow> 'a tree \<Rightarrow> nat" 
  where
  "count_tree _ _ = undefined"
  
lemma count_tree_ins_eq: "count_tree x (ins_eq x t) = Suc (count_tree x t)"  
  sorry

lemma count_tree_ins_eq_diff: "x\<noteq>y \<Longrightarrow> count_tree y (ins_eq x t) = count_tree y t"
  sorry

end

Check File

theory Check
  imports Submission
begin

lemma isin_bst_eq: "bst_eq t \<Longrightarrow> isin t x = (x \<in> set_tree t)"
  by (rule isin_bst_eq)

lemma bst_eq_ins: "bst_eq t \<Longrightarrow> bst_eq (ins x t)"
  by(rule bst_eq_ins)

lemma bst_eq_ins_eq: "bst_eq t \<Longrightarrow> bst_eq (ins_eq x t)"
  by(rule bst_eq_ins_eq)

lemma count_tree_ins_eq: "count_tree x (ins_eq x t) = Suc (count_tree x t)"  
  by (rule count_tree_ins_eq)

lemma "x\<noteq>y \<Longrightarrow> count_tree y (ins_eq x t) = count_tree y t"
  by (rule count_tree_ins_eq_diff)

end

Terms and Conditions