I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-IMP.Types" begin end
theory Submission imports Defs begin type_synonym ety = "ty option" type_synonym etyenv = "vname \<Rightarrow> ety" inductive infer_aty :: "etyenv \<Rightarrow> aexp \<Rightarrow> ty \<Rightarrow> bool" inductive infer_bty :: "etyenv \<Rightarrow> bexp \<Rightarrow> bool" definition is_inst :: "tyenv \<Rightarrow> etyenv \<Rightarrow> bool" where "is_inst \<Gamma> e\<Gamma> \<equiv> \<forall>x \<tau>. e\<Gamma> x = Some \<tau> \<longrightarrow> \<Gamma> x = \<tau>" theorem ainfer: assumes "infer_aty e\<Gamma> a \<tau>" and "is_inst \<Gamma> e\<Gamma>" shows "atyping \<Gamma> a \<tau>" sorry theorem binfer: assumes "infer_bty e\<Gamma> b" and "is_inst \<Gamma> e\<Gamma>" shows "btyping \<Gamma> b" sorry definition combine :: "etyenv \<Rightarrow> etyenv \<Rightarrow> etyenv \<Rightarrow> bool" where "combine e\<Gamma>\<^sub>1 e\<Gamma>\<^sub>2 e\<Gamma> \<equiv> e\<Gamma> = e\<Gamma>\<^sub>1 ++ e\<Gamma>\<^sub>2 \<and> (\<forall>x \<tau>\<^sub>1 \<tau>\<^sub>2. e\<Gamma>\<^sub>1 x = Some \<tau>\<^sub>1 \<and> e\<Gamma>\<^sub>2 x = Some \<tau>\<^sub>2 \<longrightarrow> \<tau>\<^sub>1 = \<tau>\<^sub>2)" inductive infer_cty :: "etyenv \<Rightarrow> com \<Rightarrow> etyenv \<Rightarrow> bool" abbreviation "test_c \<equiv> ''x''::=Ic 0;; (IF Less (V ''x'') (Ic 2) THEN SKIP ELSE ''y'' ::= Rc 1.0);; ''y'' ::= Plus (V ''y'') (Rc 3.1)" lemma "\<exists>e\<Gamma>'. infer_cty (\<lambda>_. None) test_c e\<Gamma>'" apply (rule exI) apply (rule infer_cty.intros) apply simp apply (rule infer_cty.intros) apply (rule infer_cty.intros) apply simp apply (rule infer_aty.intros) \<comment>\<open>and so on ...\<close> sorry theorem infer_typing: assumes "infer_cty e\<Gamma> c e\<Gamma>'" and "is_inst \<Gamma> e\<Gamma>'" shows "ctyping \<Gamma> c" sorry end
theory Check imports Submission begin theorem ainfer: assumes "infer_aty e\<Gamma> a \<tau>" and "is_inst \<Gamma> e\<Gamma>" shows "atyping \<Gamma> a \<tau>" using assms by (rule Submission.ainfer) theorem binfer: assumes "infer_bty e\<Gamma> b" and "is_inst \<Gamma> e\<Gamma>" shows "btyping \<Gamma> b" using assms by (rule Submission.binfer) theorem infer_typing: assumes "infer_cty e\<Gamma> c e\<Gamma>'" and "is_inst \<Gamma> e\<Gamma>'" shows "ctyping \<Gamma> c" using assms by (rule Submission.infer_typing) end