Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Homework 7

This is the task corresponding to homework 7.

Resources

Download Files

Definitions File

theory Defs imports "HOL-IMP.Sec_Type_Expr" "HOL-IMP.Def_Init_Small" begin

inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where
  Skip: "l \<turnstile> SKIP" |
  Assign: "\<lbrakk> sec x \<ge> sec a;  sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" |
  Seq: "\<lbrakk> l \<turnstile> c\<^sub>1;  l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> c\<^sub>1;;c\<^sub>2" |
  If: "\<lbrakk> max (sec b) l \<turnstile> c\<^sub>1;  max (sec b) l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" |
  While: "max (sec b) l \<turnstile> c \<Longrightarrow> l \<turnstile> WHILE b DO c"

inductive_cases [elim!]: "l \<turnstile> x ::= a"  "l \<turnstile> c\<^sub>1;;c\<^sub>2"  "l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2"  "l \<turnstile> WHILE b DO c"

lemma anti_mono: "\<lbrakk> l \<turnstile> c;  l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile> c"
  apply(induction arbitrary: l' rule: sec_type.induct)
      apply (metis sec_type.intros(1))
     apply (metis le_trans sec_type.intros(2))
    apply (metis sec_type.intros(3))
   apply (metis If le_refl sup_mono sup_nat_def)
  apply (metis While le_refl sup_mono sup_nat_def)
  done

inductive sec_type2 :: "com \<Rightarrow> level \<Rightarrow> bool" ("(\<turnstile> _ : _)" [0,0] 50) where
  Skip2: "\<turnstile> SKIP : l" |
  Assign2: "sec x \<ge> sec a \<Longrightarrow> \<turnstile> x ::= a : sec x" |
  Seq2: "\<lbrakk> \<turnstile> c\<^sub>1 : l\<^sub>1;  \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk> \<Longrightarrow> \<turnstile> c\<^sub>1;;c\<^sub>2 : min l\<^sub>1 l\<^sub>2 " |
  If2: "\<lbrakk> sec b \<le> min l\<^sub>1 l\<^sub>2;  \<turnstile> c\<^sub>1 : l\<^sub>1;  \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk> \<Longrightarrow> \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2 : min l\<^sub>1 l\<^sub>2" |
  While2:  "\<lbrakk> sec b \<le> l;  \<turnstile> c : l \<rbrakk> \<Longrightarrow> \<turnstile> WHILE b DO c : l"

end

Template File

theory Submission imports Defs begin

theorem bottom_up_impl_top_down: "\<turnstile> c : l \<Longrightarrow> l \<turnstile> c"
  sorry

theorem top_down_impl_bottom_up: "l \<turnstile> c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'"
  sorry

hide_const D

fun AV :: "com \<Rightarrow> vname set" where
  "AV _ = undefined"

fun D :: "vname set \<Rightarrow> com \<Rightarrow> bool" where
  "D _ = undefined"

lemma D_progress:
  assumes "c \<noteq> SKIP"
  shows "D (dom s) c \<Longrightarrow> \<exists> cs'. (c,s) \<rightarrow> cs'"
  using assms
proof (induction c arbitrary: s)
  case Assign thus ?case by auto (metis aval_Some small_step.Assign)
next
  case (If b c1 c2)
  then obtain bv where "bval b s = Some bv" by (auto dest!: bval_Some)
  then show ?case
    by(cases bv) (auto intro: small_step.IfTrue small_step.IfFalse)
qed (fastforce intro: small_step.intros)+

lemma D_incr: "(c,s) \<rightarrow> (c',s') \<Longrightarrow> dom s \<union> AV c \<subseteq> dom s' \<union> AV c'"
  sorry

lemma D_mono: "A \<subseteq> A' \<Longrightarrow> D A c \<Longrightarrow> D A' c"
  sorry

theorem D_preservation: "(c,s) \<rightarrow> (c',s') \<Longrightarrow> D (dom s) c \<Longrightarrow> D (dom s') c'"
  sorry

theorem D_sound: "(c,s) \<rightarrow>* (c',s') \<Longrightarrow> c' \<noteq> SKIP \<Longrightarrow> D (dom s) c \<Longrightarrow> \<exists>cs''. (c',s') \<rightarrow> cs''"
  sorry

end

Check File

theory Check imports Submission begin

theorem bottom_up_impl_top_down: "\<turnstile> c : l \<Longrightarrow> l \<turnstile> c"
  by (rule Submission.bottom_up_impl_top_down)

theorem top_down_impl_bottom_up: "l \<turnstile> c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'"
  by (rule Submission.top_down_impl_bottom_up)

theorem D_preservation: "(c,s) \<rightarrow> (c',s') \<Longrightarrow> D (dom s) c \<Longrightarrow> D (dom s') c'"
  by (rule Submission.D_preservation)

theorem D_sound: "(c,s) \<rightarrow>* (c',s') \<Longrightarrow> c' \<noteq> SKIP \<Longrightarrow> D (dom s) c \<Longrightarrow> \<exists>cs''. (c',s') \<rightarrow> cs''"
  by (rule Submission.D_sound)

end

Terms and Conditions