I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Complex_Main "HOL-Data_Structures.Tree23_Set" begin lemma height_bound_upper: "complete t \<Longrightarrow> height t \<le> log 2 (size t + 1)" using ht_sz_if_complete le_log2_of_power by blast lemma height_bound_lower_aux: assumes "complete t" shows "size t + 1 \<le> 3^(height t)" using assms by (induction t) auto lemma height_bound_lower: assumes "complete t" shows "log 3 (size t + 1) \<le> height t" proof - from log_le_cancel_iff[of 3 "size t + 1" "3^height t"] and height_bound_lower_aux[OF assms] have "log 3 (size t + 1) \<le> log 3 (3 ^ height t)" using of_nat_mono by fastforce also have "\<dots> = height t" by (simp add: log_nat_power) finally show ?thesis . qed consts num_leaves :: "'a' tree23 \<Rightarrow> nat" consts is_2_tree :: "'a tree23 \<Rightarrow> bool" end
theory Submission imports Defs begin fun num_leaves :: "'a tree23 \<Rightarrow> nat" where "num_leaves _ = undefined" fun is_2_tree :: "'a tree23 \<Rightarrow> bool" where "is_2_tree _ = undefined" theorem complete_2_tree_height: "complete t \<Longrightarrow> is_2_tree t \<longleftrightarrow> num_leaves t = 2^height t" sorry end
theory Check imports Submission begin theorem complete_2_tree_height: "complete t \<Longrightarrow> is_2_tree t \<longleftrightarrow> num_leaves t = 2^height t" by (rule Submission.complete_2_tree_height) end