I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-Library.Tree" begin fun isin :: "('a::linorder) tree \<Rightarrow> 'a \<Rightarrow> bool" where "isin Leaf x = False" | "isin (Node l a r) x = (if x < a then isin l x else if x > a then isin r x else True)" fun ins :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where "ins x Leaf = Node Leaf x Leaf" | "ins x (Node l a r) = (if x < a then Node (ins x l) a r else if x > a then Node l a (ins x r) else Node l a r)" lemma set_tree_isin: "bst t \<Longrightarrow> isin t x = (x \<in> set_tree t)" apply(induction t) apply auto done lemma set_tree_ins: "set_tree (ins x t) = {x} \<union> set_tree t" apply(induction t) apply auto done lemma bst_ins: "bst t \<Longrightarrow> bst (ins x t)" apply(induction t) apply (auto simp: set_tree_ins) done datatype direction = L | R type_synonym path = "direction list" declare [[names_short]] consts bst_remdups_aux :: "'a::linorder tree \<Rightarrow> 'a list \<Rightarrow> 'a list" consts sublist :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" consts get :: "'a tree \<Rightarrow> path \<Rightarrow> 'a tree" consts put :: "'a tree \<Rightarrow> path \<Rightarrow> 'a tree \<Rightarrow> 'a tree" consts valid :: "'a tree \<Rightarrow> path \<Rightarrow> bool" consts find :: "'a tree \<Rightarrow> 'a tree \<Rightarrow> path set" end
theory Submission imports Defs begin fun bst_remdups_aux :: "'a::linorder tree \<Rightarrow> 'a list \<Rightarrow> 'a list" where "bst_remdups_aux _ = undefined" definition "bst_remdups xs \<equiv> bst_remdups_aux Leaf xs" theorem remdups_set: "set (bst_remdups xs) = set xs" sorry theorem remdups_distinct: "distinct (bst_remdups xs)" sorry fun sublist :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "sublist _ = undefined" theorem remdups_sub: "sublist (bst_remdups xs) xs" sorry fun get :: "'a tree \<Rightarrow> path \<Rightarrow> 'a tree" where "get _ = undefined" fun put :: "'a tree \<Rightarrow> path \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where "put _ = undefined" fun valid :: "'a tree \<Rightarrow> path \<Rightarrow> bool" where "valid _ = undefined" fun find :: "'a tree \<Rightarrow> 'a tree \<Rightarrow> path set" where "find _ = undefined" lemma get_put: "valid t p \<Longrightarrow> put t p (get t p) = t" sorry lemma put_get: "valid t p \<Longrightarrow> get (put t p s) p = s" sorry lemma find_get: "p \<in> find t s \<Longrightarrow> get t p = s" sorry lemma put_find: "valid t p \<Longrightarrow> p \<in> find (put t p s) s" sorry end
theory Check imports Submission begin theorem remdups_set: "set (bst_remdups xs) = set xs" by (rule Submission.remdups_set) theorem remdups_distinct: "distinct (bst_remdups xs)" by (rule Submission.remdups_distinct) theorem remdups_sub: "sublist (bst_remdups xs) xs" by (rule Submission.remdups_sub) lemma get_put: "valid t p \<Longrightarrow> put t p (get t p) = t" by (rule Submission.get_put) lemma put_get: "valid t p \<Longrightarrow> get (put t p s) p = s" by (rule Submission.put_get) lemma find_get: "p \<in> find t s \<Longrightarrow> get t p = s" by (rule Submission.find_get) lemma put_find: "valid t p \<Longrightarrow> p \<in> find (put t p s) s" by (rule Submission.put_find) end