I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Main begin datatype 'a rtree = Leaf | Node "'a rtree" nat 'a "'a rtree" definition "at_index i l x \<equiv> i<length l \<and> l!i=x" declare Let_def [simp] declare [[names_short]] consts num_nodes :: "'a rtree \<Rightarrow> nat" consts rbst :: "'a::linorder rtree \<Rightarrow> bool" consts rins :: "'a::linorder \<Rightarrow> 'a rtree \<Rightarrow> 'a rtree" consts risin :: "'a::linorder \<Rightarrow> 'a rtree \<Rightarrow> bool" consts inorder :: "'a rtree \<Rightarrow> 'a list" consts rank :: "'a::linorder \<Rightarrow> 'a rtree \<Rightarrow> nat" consts select :: "nat \<Rightarrow> 'a::linorder rtree \<Rightarrow> 'a" end
theory Submission imports Defs begin fun num_nodes :: "'a rtree \<Rightarrow> nat" where "num_nodes _ = undefined" fun rbst :: "'a::linorder rtree \<Rightarrow> bool" where "rbst _ = undefined" fun rins :: "'a::linorder \<Rightarrow> 'a rtree \<Rightarrow> 'a rtree" where "rins _ = undefined" lemma rins_set: "set_rtree (rins x t) = insert x (set_rtree t)" sorry lemma rins_invar: "x\<notin>set_rtree t \<Longrightarrow> rbst t \<Longrightarrow> rbst (rins x t)" sorry fun risin :: "'a::linorder \<Rightarrow> 'a rtree \<Rightarrow> bool" where "risin _ = undefined" lemma risin_set: "rbst t \<Longrightarrow> risin x t \<longleftrightarrow> x\<in>set_rtree t" sorry fun inorder :: "'a rtree \<Rightarrow> 'a list" where "inorder _ = undefined" fun rank :: "'a::linorder \<Rightarrow> 'a rtree \<Rightarrow> nat" where "rank _ = undefined" lemma inorder_index: "rbst t \<Longrightarrow> x\<in>set_rtree t \<Longrightarrow> at_index (rank x t) (inorder t) x" sorry fun select :: "nat \<Rightarrow> 'a::linorder rtree \<Rightarrow> 'a" where "select _ = undefined" lemma select_correct: "rbst t \<Longrightarrow> i<length (inorder t) \<Longrightarrow> select i t = inorder t ! i" sorry end
theory Check imports Submission begin lemma rins_set: "set_rtree (rins x t) = insert x (set_rtree t)" by (rule Submission.rins_set) lemma rins_invar: "x\<notin>set_rtree t \<Longrightarrow> rbst t \<Longrightarrow> rbst (rins x t)" by (rule Submission.rins_invar) lemma risin_set: "rbst t \<Longrightarrow> risin x t \<longleftrightarrow> x\<in>set_rtree t" by (rule Submission.risin_set) lemma inorder_index: "rbst t \<Longrightarrow> x\<in>set_rtree t \<Longrightarrow> at_index (rank x t) (inorder t) x" by (rule Submission.inorder_index) lemma select_correct: "rbst t \<Longrightarrow> i<length (inorder t) \<Longrightarrow> select i t = inorder t ! i" by (rule Submission.select_correct) end