I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-Library.Extended_Nat" begin declare Let_def[simp] declare [[names_short]] datatype interval = I nat enat ("[_,_')") type_synonym intervals = "interval list" fun inv' :: "nat \<Rightarrow> intervals \<Rightarrow> bool" where "inv' k [] = True" | "inv' k [[l,\<infinity>)] = (k \<le> l)" | "inv' k ([l,r)#ins) = (k\<le>l \<and> l<r \<and> inv' (Suc r) ins)" | "inv' _ _ = False" definition inv where "inv = inv' 0" consts set_of :: "intervals \<Rightarrow> nat set" consts list_intvls' :: "nat \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> interval list" consts compl' :: "nat \<Rightarrow> intervals \<Rightarrow> intervals" consts compl :: "intervals \<Rightarrow> intervals" end
theory Submission imports Defs begin value "[1,\<infinity>)" fun set_of :: "intervals \<Rightarrow> nat set" where "set_of _ = undefined" lemma "set_of [[4,10), [42,\<infinity>)] = {4..9} \<union> {42..}" by (auto simp: numeral_eq_enat) fun list_intvls' :: "nat \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> interval list" where "list_intvls' _ = undefined" definition "list_intervals xs = (case xs of [] \<Rightarrow> [] | (x#xs) \<Rightarrow> list_intvls' x (Suc x) xs)" lemma list_intvls'_inv[simp]: "sorted (x#xs) \<Longrightarrow> l \<le> x \<Longrightarrow> inv' l (list_intvls' l (Suc x) xs)" sorry theorem list_intervals_inv: "sorted (x#xs) \<Longrightarrow> inv (list_intervals (x#xs))" sorry theorem list_intervals_set: "sorted (x#xs) \<Longrightarrow> set (x#xs) = set_of (list_intervals (x#xs))" sorry fun compl' :: "nat \<Rightarrow> intervals \<Rightarrow> intervals" where "compl' _ = undefined" definition compl :: "intervals \<Rightarrow> intervals" where "compl _ = undefined" theorem compl_inv[simp]: "inv is \<Longrightarrow> inv (compl is)" sorry theorem compl_set: "inv is \<Longrightarrow> set_of (compl is) = -set_of is" sorry end
theory Check imports Submission begin lemma list_intvls'_inv: "sorted (x#xs) \<Longrightarrow> l \<le> x \<Longrightarrow> inv' l (list_intvls' l (Suc x) xs)" by (rule Submission.list_intvls'_inv) theorem list_intervals_inv: "sorted (x#xs) \<Longrightarrow> inv (list_intervals (x#xs))" by (rule Submission.list_intervals_inv) theorem list_intervals_set: "sorted (x#xs) \<Longrightarrow> set (x#xs) = set_of (list_intervals (x#xs))" by (rule Submission.list_intervals_set) theorem compl_inv: "inv is \<Longrightarrow> inv (compl is)" by (rule Submission.compl_inv) theorem compl_set: "inv is \<Longrightarrow> set_of (compl is) = -set_of is" by (rule Submission.compl_set) end