I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-Library.Tree" begin fun avl :: "nat tree \<Rightarrow> bool" where "avl \<langle>\<rangle> = True" | "avl \<langle>l, n, r\<rangle> = (abs(int(height l) - int(height r)) \<le> 1 \<and> n = max (height l) (height r) + 1 \<and> avl l \<and> avl r)" fun ht :: "nat tree \<Rightarrow> nat" where "ht \<langle>\<rangle> = 0" | "ht \<langle>l, n, r\<rangle> = n" lemma ht_height[simp]: "avl t \<Longrightarrow> ht t = height t" by (induction t) auto declare [[names_short]] fun fib_tree :: "nat \<Rightarrow> nat tree" where "fib_tree 0 = \<langle>\<rangle>" | "fib_tree (Suc 0) = \<langle>\<langle>\<rangle>, 1, \<langle>\<rangle>\<rangle>" | "fib_tree (Suc(Suc n)) = \<langle>fib_tree (Suc n), Suc (Suc n), fib_tree n\<rangle>" datatype 'a itree = iLeaf | iNode "'a itree" "'a \<times> 'a" "'a itree" fun set_itree2:: "'a::ord itree \<Rightarrow> 'a set" where "set_itree2 iLeaf = {}" | "set_itree2 (iNode l (low, high) r) = {low .. high} \<union> ((set_itree2 l) \<union> (set_itree2 r))" fun set_itree3:: "'a itree \<Rightarrow> ('a \<times> 'a) set" where "set_itree3 iLeaf = {}" | "set_itree3 (iNode l (low, high) r) = {(low, high)} \<union> ((set_itree3 l) \<union> (set_itree3 r))" consts ibst :: "'a::linorder itree \<Rightarrow> bool" consts delete :: "int \<Rightarrow> int itree \<Rightarrow> int itree" end
theory Submission imports Defs begin lemma fib_tree_minimal: "avl t \<Longrightarrow> size1 (fib_tree (ht t)) \<le> size1 t" sorry fun ibst :: "'a::linorder itree \<Rightarrow> bool" where "ibst _ = undefined" fun delete :: "int \<Rightarrow> int itree \<Rightarrow> int itree" where "delete _ = undefined" theorem delete_set_minus: "ibst t \<Longrightarrow> set_itree2 (delete x t) = (set_itree2 t) - {x}" sorry theorem delete_ibst: "ibst t \<Longrightarrow> ibst (delete x t)" sorry end
theory Check imports Submission begin lemma fib_tree_minimal: "avl t \<Longrightarrow> size1 (fib_tree (ht t)) \<le> size1 t" by (rule Submission.fib_tree_minimal) theorem delete_set_minus: "ibst t \<Longrightarrow> set_itree2 (delete x t) = (set_itree2 t) - {x}" by (rule Submission.delete_set_minus) theorem delete_ibst: "ibst t \<Longrightarrow> ibst (delete x t)" by (rule Submission.delete_ibst) end