I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Main "HOL-IMP.Small_Step" begin declare [[names_short]] type_synonym ('q,'l) lts = "'q \<Rightarrow> 'l \<Rightarrow> 'q \<Rightarrow> bool" inductive word :: "('q,'l) lts \<Rightarrow> 'q \<Rightarrow> 'l list \<Rightarrow> 'q \<Rightarrow> bool" for \<delta> where empty: "word \<delta> q [] q" | prepend: "\<lbrakk>\<delta> q l p; word \<delta> p ls r\<rbrakk> \<Longrightarrow> word \<delta> q (l#ls) r" type_synonym effect = "state \<Rightarrow> state option" type_synonym 'q cfg = "('q,effect) lts" consts eff_list :: "effect list \<Rightarrow> state \<Rightarrow> state option" consts cfg :: "com cfg" end
theory Submission imports Defs begin type_synonym effect = "state \<Rightarrow> state option" type_synonym 'q cfg = "('q,effect) lts" fun eff_list :: "effect list \<Rightarrow> state \<Rightarrow> state option" where "eff_list _ = undefined" inductive cfg :: "com cfg" where cfg_assign: "cfg (x ::= a) (\<lambda>s. Some (s(x:=aval a s))) (SKIP)" | cfg_Seq2: "cfg c1 e c1' \<Longrightarrow> cfg (c1;;c2) e (c1';;c2)" theorem eq_step: "(c,s) \<rightarrow> (c',s') \<longleftrightarrow> (\<exists>e. cfg c e c' \<and> e s = Some s')" sorry theorem eq_path: "(c,s) \<rightarrow>* (c',s') \<longleftrightarrow> (\<exists>\<pi>. word cfg c \<pi> c' \<and> eff_list \<pi> s = Some s')" sorry end
theory Check imports Submission begin theorem eq_step: "(c,s) \<rightarrow> (c',s') \<longleftrightarrow> (\<exists>e. cfg c e c' \<and> e s = Some s')" by (rule Submission.eq_step) theorem eq_path: "(c,s) \<rightarrow>* (c',s') \<longleftrightarrow> (\<exists>\<pi>. word cfg c \<pi> c' \<and> eff_list \<pi> s = Some s')" by (rule Submission.eq_path) end