I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Main begin no_notation less_eq ("(_/ \<le> _)" [51, 51] 50) datatype bin = Zero | One | Single | More | Any fun \<gamma> :: "bin \<Rightarrow> nat set" where "\<gamma> Zero = {0}" | "\<gamma> One = {2^0}" | "\<gamma> Single = {2^n| n. True }" | "\<gamma> More = {n. (\<nexists>k. n = 2^k) \<and> n\<noteq>0 }" | "\<gamma> Any = UNIV" consts less_bin :: "bin \<Rightarrow> bin \<Rightarrow> bool" consts plus' :: "bin \<Rightarrow> bin \<Rightarrow> bin" end
theory Submission imports Defs begin definition less_bin :: "bin \<Rightarrow> bin \<Rightarrow> bool" ("(_/ \<le> _)" [51, 51] 50) where "x \<le> y = undefined" theorem less_bin_sub: "(x::bin) \<le> y \<Longrightarrow> \<gamma> x \<subseteq> \<gamma> y" sorry fun plus' :: "bin \<Rightarrow> bin \<Rightarrow> bin" where "plus' _ = undefined" theorem plus'_\<gamma>: "\<lbrakk>n1 \<in> \<gamma> x; n2 \<in> \<gamma> y\<rbrakk> \<Longrightarrow> n1+n2 \<in> \<gamma> (plus' x y)" sorry type_synonym entry = "(bin*bin) option" type_synonym row = "(nat*entry) list" definition table :: "row list" where "table = undefined" end
theory Check imports Submission begin lemma "(x::bin) \<le> y \<Longrightarrow> \<gamma> x \<subseteq> \<gamma> y" by (rule Submission.less_bin_sub) lemma "\<lbrakk>n1 \<in> \<gamma> x; n2 \<in> \<gamma> y\<rbrakk> \<Longrightarrow> n1+n2 \<in> \<gamma> (plus' x y)" by (rule Submission.plus'_\<gamma>) end