Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Complete Lattices

This is the task corresponding to exercise 5. Complete Lattices.

Resources

Download Files

Definitions File

theory Defs
  imports Main
begin

definition lub :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> bool" where
"lub L M X = ((\<forall>Y \<in> M. Y \<subseteq> X) \<and> (\<forall>X' \<in> L. (\<forall>Y \<in> M. Y \<subseteq> X') \<longrightarrow> X \<subseteq> X'))"

definition glb :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> bool" where
"glb L M X = ((\<forall>Y \<in> M. X \<subseteq> Y) \<and> (\<forall>X' \<in> L. (\<forall>Y \<in> M. X' \<subseteq> Y) \<longrightarrow> X' \<subseteq> X))"

definition cl :: "'a set set \<Rightarrow> bool" where
"cl L = (\<forall>M \<subseteq> L. \<exists>X \<in> L. glb L M X)"

end

Template File

theory Submission
  imports Defs
begin

theorem cl_lub
  assumes "cl L"
      and "M \<subseteq> L"
    shows "\<exists>X. lub L M X"
  sorry

end

Check File

theory Check
  imports Submission
begin

lemma "\<lbrakk>cl L; M \<subseteq> L\<rbrakk> \<Longrightarrow>\<exists>X. lub L M X"
  by (rule Submission.cl_lub)

end

Terms and Conditions