Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Complete Lattices

This is the task corresponding to exercise 5. Complete Lattices.


Download Files

Definitions File

theory Defs
  imports Main

definition lub :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> bool" where
"lub L M X = ((\<forall>Y \<in> M. Y \<subseteq> X) \<and> (\<forall>X' \<in> L. (\<forall>Y \<in> M. Y \<subseteq> X') \<longrightarrow> X \<subseteq> X'))"

definition glb :: "'a set set \<Rightarrow> 'a set set \<Rightarrow> 'a set \<Rightarrow> bool" where
"glb L M X = ((\<forall>Y \<in> M. X \<subseteq> Y) \<and> (\<forall>X' \<in> L. (\<forall>Y \<in> M. X' \<subseteq> Y) \<longrightarrow> X' \<subseteq> X))"

definition cl :: "'a set set \<Rightarrow> bool" where
"cl L = (\<forall>M \<subseteq> L. \<exists>X \<in> L. glb L M X)"


Template File

theory Submission
  imports Defs

theorem cl_lub
  assumes "cl L"
      and "M \<subseteq> L"
    shows "\<exists>X. lub L M X"


Check File

theory Check
  imports Submission

lemma "\<lbrakk>cl L; M \<subseteq> L\<rbrakk> \<Longrightarrow>\<exists>X. lub L M X"
  by (rule Submission.cl_lub)


Terms and Conditions