Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Homework 5

This is the task corresponding to homework 5.

Resources

Download Files

Definitions File

theory Defs
  imports Main
begin

definition \<O> :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) set" where 
  "\<O>(g) = {f. \<exists>c>0. \<exists>x\<^sub>0. \<forall>x \<ge> x\<^sub>0. f(x) \<le> c * g(x)}"

lemma induct_pcpl:
  "\<lbrakk>P []; \<And>x. P [x]; \<And>x y zs. P zs \<Longrightarrow> P (x # y # zs)\<rbrakk> \<Longrightarrow> P xs"
by induction_schema (pat_completeness, lexicographic_order)




end

Template File

theory Submission
  imports Defs
begin

lemma lin_in_square: "(\<lambda>n. 2*n) \<in> \<O> (\<lambda>n. n^2)"
  unfolding \<O>_def
sorry
qed

lemma square_notin_lin: "(\<lambda>n. n^2) \<notin> \<O> (\<lambda>n. 2*n)"
  sorry

thm splice.simps

lemma split_splice:
  "\<exists>ys zs. xs = splice ys zs \<and> length ys \<ge> (length xs) div 2 \<and> length zs \<ge> (length xs) div 2"
  sorry

end

Check File

theory Check
  imports Submission
begin

lemma lin_in_square: "(\<lambda>n. 2*n) \<in> \<O> (\<lambda>n. n^2)"
  by (rule Submission.lin_in_square)

lemma square_notin_lin: "(\<lambda>n. n^2) \<notin> \<O> (\<lambda>n. 2*n)"
  by (rule Submission.square_notin_lin)

lemma split_splice: "\<exists>ys zs. xs = splice ys zs \<and> length ys \<ge> (length xs) div 2 \<and> length zs \<ge> (length xs) div 2"
  by (rule Submission.split_splice)

end

Terms and Conditions