I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Main begin definition \<O> :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) set" where "\<O>(g) = {f. \<exists>c>0. \<exists>x\<^sub>0. \<forall>x \<ge> x\<^sub>0. f(x) \<le> c * g(x)}" lemma induct_pcpl: "\<lbrakk>P []; \<And>x. P [x]; \<And>x y zs. P zs \<Longrightarrow> P (x # y # zs)\<rbrakk> \<Longrightarrow> P xs" by induction_schema (pat_completeness, lexicographic_order) end
theory Submission imports Defs begin lemma lin_in_square: "(\<lambda>n. 2*n) \<in> \<O> (\<lambda>n. n^2)" unfolding \<O>_def sorry qed lemma square_notin_lin: "(\<lambda>n. n^2) \<notin> \<O> (\<lambda>n. 2*n)" sorry thm splice.simps lemma split_splice: "\<exists>ys zs. xs = splice ys zs \<and> length ys \<ge> (length xs) div 2 \<and> length zs \<ge> (length xs) div 2" sorry end
theory Check imports Submission begin lemma lin_in_square: "(\<lambda>n. 2*n) \<in> \<O> (\<lambda>n. n^2)" by (rule Submission.lin_in_square) lemma square_notin_lin: "(\<lambda>n. n^2) \<notin> \<O> (\<lambda>n. 2*n)" by (rule Submission.square_notin_lin) lemma split_splice: "\<exists>ys zs. xs = splice ys zs \<and> length ys \<ge> (length xs) div 2 \<and> length zs \<ge> (length xs) div 2" by (rule Submission.split_splice) end