Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Homework 6_1

This is the task corresponding to homework 6_1.

Resources

Download Files

Definitions File

theory Defs
  imports "HOL-IMP.Star"
begin

declare [[syntax_ambiguity_warning=false]]

datatype val = Iv int | Pv val val

type_synonym vname = string
type_synonym state = "vname \<Rightarrow> val"

datatype aexp =  N int | V vname | Plus aexp aexp | Pair aexp aexp | Fst aexp | Snd aexp

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

datatype
  com = SKIP 
      | Assign vname aexp       ("_ ::= _" [1000, 61] 61)
      | Seq    com  com         ("_;; _"  [60, 61] 60)
      | If     bexp com com     ("IF _ THEN _ ELSE _"  [0, 0, 61] 61)
      | While  bexp com         ("WHILE _ DO _"  [0, 61] 61)
      | SWAP   vname

datatype ty = Ity | Pty ty ty

type_synonym tyenv = "vname \<Rightarrow> ty"

fun type :: "val \<Rightarrow> ty" where
"type (Iv i) = Ity" |
"type (Pv v1 v2) = Pty (type v1) (type v2)"

lemma type_eq_Ity[simp]: "type v = Ity \<longleftrightarrow> (\<exists>i. v = Iv i)"
  by (cases v) simp_all

definition styping :: "tyenv \<Rightarrow> state \<Rightarrow> bool" (infix "\<turnstile>" 50)
where "\<Gamma> \<turnstile> s  \<longleftrightarrow>  (\<forall>x. type (s x) = \<Gamma> x)"


consts small_step :: "(com \<times> state) \<Rightarrow> (com \<times> state) \<Rightarrow> bool"

consts taval :: "aexp \<Rightarrow> state \<Rightarrow> val \<Rightarrow> bool"

consts tbval :: "bexp \<Rightarrow> state \<Rightarrow> bool \<Rightarrow> bool"

consts atyping :: "tyenv \<Rightarrow> aexp \<Rightarrow> ty \<Rightarrow> bool"

consts btyping :: "tyenv \<Rightarrow> bexp \<Rightarrow> bool"

consts ctyping :: "tyenv \<Rightarrow> com \<Rightarrow> bool"

consts small_steps :: "com * state \<Rightarrow> com * state \<Rightarrow> bool"


end

Template File

theory Submission
  imports Defs
begin

inductive taval :: "aexp \<Rightarrow> state \<Rightarrow> val \<Rightarrow> bool" where
"taval (N i) s (Iv i)" |
"taval (V x) s (s x)" |
"taval a1 s (Iv i1) \<Longrightarrow> taval a2 s (Iv i2)
 \<Longrightarrow> taval (Plus a1 a2) s (Iv (i1 + i2))"

inductive_cases [elim!]:
  "taval (N i) s v"
  "taval (V x) s v"
  "taval (Plus a1 a2) s v"


inductive tbval :: "bexp \<Rightarrow> state \<Rightarrow> bool \<Rightarrow> bool" where
"tbval (Bc v) s v" |
"tbval b s bv \<Longrightarrow> tbval (Not b) s (\<not> bv)" |
"tbval b1 s bv1 \<Longrightarrow> tbval b2 s bv2 \<Longrightarrow> tbval (And b1 b2) s (bv1 \<and> bv2)" |
"taval a1 s (Iv i1) \<Longrightarrow> taval a2 s (Iv i2) \<Longrightarrow> tbval (Less a1 a2) s (i1 < i2)"


inductive
  small_step :: "(com \<times> state) \<Rightarrow> (com \<times> state) \<Rightarrow> bool" (infix "\<rightarrow>" 55) 
where
Assign:  "taval a s v \<Longrightarrow> (x ::= a, s) \<rightarrow> (SKIP, s(x := v))" |
Seq1:   "(SKIP;;c,s) \<rightarrow> (c,s)" |
Seq2:   "(c1,s) \<rightarrow> (c1',s') \<Longrightarrow> (c1;;c2,s) \<rightarrow> (c1';;c2,s')" |
IfTrue:  "tbval b s True \<Longrightarrow> (IF b THEN c1 ELSE c2,s) \<rightarrow> (c1,s)" |
IfFalse: "tbval b s False \<Longrightarrow> (IF b THEN c1 ELSE c2,s) \<rightarrow> (c2,s)" |
While:   "(WHILE b DO c,s) \<rightarrow> (IF b THEN c;; WHILE b DO c ELSE SKIP,s)"

lemmas small_step_induct = small_step.induct[split_format(complete)]

inductive atyping :: "tyenv \<Rightarrow> aexp \<Rightarrow> ty \<Rightarrow> bool"
  ("(1_/ \<turnstile>/ (_ :/ _))" [50,0,50] 50) where
Ic_ty: "\<Gamma> \<turnstile> N i : Ity" |
V_ty: "\<Gamma> \<turnstile> V x : \<Gamma> x"


declare atyping.intros [intro!]
inductive_cases [elim!]:
  "\<Gamma> \<turnstile> V x : \<tau>" "\<Gamma> \<turnstile> N i : \<tau>" "\<Gamma> \<turnstile> Plus a1 a2 : \<tau>"

inductive btyping :: "tyenv \<Rightarrow> bexp \<Rightarrow> bool" (infix "\<turnstile>" 50) where
B_ty: "\<Gamma> \<turnstile> Bc v" |
Not_ty: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> Not b" |
And_ty: "\<Gamma> \<turnstile> b1 \<Longrightarrow> \<Gamma> \<turnstile> b2 \<Longrightarrow> \<Gamma> \<turnstile> And b1 b2" |
Less_ty: "\<Gamma> \<turnstile> a1 : Ity \<Longrightarrow> \<Gamma> \<turnstile> a2 : Ity \<Longrightarrow> \<Gamma> \<turnstile> Less a1 a2"


declare btyping.intros [intro!]
inductive_cases [elim!]: "\<Gamma> \<turnstile> Not b" "\<Gamma> \<turnstile> And b1 b2" "\<Gamma> \<turnstile> Less a1 a2"

inductive ctyping :: "tyenv \<Rightarrow> com \<Rightarrow> bool" (infix "\<turnstile>" 50) where
Skip_ty: "\<Gamma> \<turnstile> SKIP" |
Assign_ty: "\<Gamma> \<turnstile> a : \<Gamma>(x) \<Longrightarrow> \<Gamma> \<turnstile> x ::= a" |
Seq_ty: "\<Gamma> \<turnstile> c1 \<Longrightarrow> \<Gamma> \<turnstile> c2 \<Longrightarrow> \<Gamma> \<turnstile> c1;;c2" |
If_ty: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> c1 \<Longrightarrow> \<Gamma> \<turnstile> c2 \<Longrightarrow> \<Gamma> \<turnstile> IF b THEN c1 ELSE c2" |
While_ty: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> WHILE b DO c"


declare ctyping.intros [intro!]
inductive_cases [elim!]:
  "\<Gamma> \<turnstile> x ::= a" "\<Gamma> \<turnstile> c1;;c2"
  "\<Gamma> \<turnstile> IF b THEN c1 ELSE c2"
  "\<Gamma> \<turnstile> WHILE b DO c"

theorem apreservation:
  "\<Gamma> \<turnstile> a : \<tau> \<Longrightarrow> taval a s v \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> type v = \<tau>"
  sorry

theorem aprogress: "\<Gamma> \<turnstile> a : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<exists>v. taval a s v"
  sorry

theorem bprogress: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<exists>v. tbval b s v"
  sorry

theorem progress:
  "\<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> c \<noteq> SKIP \<Longrightarrow> \<exists>cs'. (c,s) \<rightarrow> cs'"
  sorry

theorem styping_preservation:
  "(c,s) \<rightarrow> (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<Gamma> \<turnstile> s'"
  sorry

theorem ctyping_preservation:
  "(c,s) \<rightarrow> (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> c'"
  sorry

abbreviation small_steps :: "com * state \<Rightarrow> com * state \<Rightarrow> bool" (infix "\<rightarrow>*" 55)
where "x \<rightarrow>* y == star small_step x y"

theorem type_sound:
  "(c,s) \<rightarrow>* (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> c' \<noteq> SKIP
   \<Longrightarrow> \<exists>cs''. (c',s') \<rightarrow> cs''"
  sorry

end

Check File

theory Check
  imports Submission
begin

theorem apreservation: "\<Gamma> \<turnstile> a : \<tau> \<Longrightarrow> taval a s v \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> type v = \<tau>"
  by (rule Submission.apreservation)

theorem aprogress: "\<Gamma> \<turnstile> a : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<exists>v. taval a s v"
  by (rule Submission.aprogress)

theorem bprogress: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<exists>v. tbval b s v"
  by (rule Submission.bprogress)

theorem progress: "\<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> c \<noteq> SKIP \<Longrightarrow> \<exists>cs'. (c,s) \<rightarrow> cs'"
  by (rule Submission.progress)

theorem styping_preservation: "(c,s) \<rightarrow> (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<Gamma> \<turnstile> s'"
  by (rule Submission.styping_preservation)

theorem ctyping_preservation: "(c,s) \<rightarrow> (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> c'"
  by (rule Submission.ctyping_preservation)

theorem type_sound: "(c,s) \<rightarrow>* (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> c' \<noteq> SKIP
   \<Longrightarrow> \<exists>cs''. (c',s') \<rightarrow> cs''"
  by (rule Submission.type_sound)

end

Terms and Conditions