Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Homework 5

This is the task corresponding to homework 5.

Resources

Download Files

Definitions File

theory Defs
  imports "HOL-Library.Tree"
begin

fun sumto :: "(nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat" where
"sumto f 0 = 0" |
"sumto f (Suc n) = sumto f n + f(Suc n)"


consts num_leafs :: "'a tree \<Rightarrow> nat"


end

Template File

theory Submission
  imports Defs
begin

lemma sum_ident: 
  "sumto (\<lambda>i. i* 2 ^ i) n = n * 2 ^ (n + 1) - (2 ^ (n + 1) - 2)"
  sorry

fun num_leafs :: "'a tree \<Rightarrow> nat"  where
  "num_leafs _ = 0"

lemma auxl:
    assumes IHl: "num_leafs l \<le> 2 ^ height l"
      and IHr: "num_leafs r \<le> 2 ^ height r"
      and lr: "height l \<le> height r"
  shows "num_leafs(Node l x r) \<le> 2 ^ height(Node l x r)"
  sorry

lemma auxr:
    assumes IHl: "num_leafs l \<le> 2 ^ height l"
      and IHr: "num_leafs r \<le> 2 ^ height r"
      and rl: "\<not> height l \<le> height r"
  shows "num_leafs(Node l x r) \<le> 2 ^ height(Node l x r)"
  sorry

theorem num_leafs_est: "num_leafs t \<le> 2^height t"
proof (induction t)
  case Leaf show ?case by auto
next
  case (Node l x r)
  assume IHl: "num_leafs l \<le> 2 ^ height l"  
  assume IHr: "num_leafs r \<le> 2 ^ height r"  
  show "num_leafs \<langle>l, x, r\<rangle> \<le> 2 ^ height \<langle>l, x, r\<rangle>"
    sorry
qed

end

Check File

theory Check
  imports Submission
begin

lemma sum_ident: "sumto (\<lambda>i. i* 2 ^ i) n = n * 2 ^ (n + 1) - (2 ^ (n + 1) - 2)"
  by (rule Submission.sum_ident)

lemma auxl: "(num_leafs l \<le> 2 ^ height l) \<Longrightarrow> (num_leafs r \<le> 2 ^ height r) \<Longrightarrow> (height l \<le> height r) \<Longrightarrow> num_leafs(Node l x r) \<le> 2 ^ height(Node l x r)"
  by (rule Submission.auxl)

lemma auxr: "(num_leafs l \<le> 2 ^ height l) \<Longrightarrow> (num_leafs r \<le> 2 ^ height r) \<Longrightarrow> (\<not> height l \<le> height r) \<Longrightarrow> num_leafs(Node l x r) \<le> 2 ^ height(Node l x r)"
  by (rule Submission.auxr)

theorem num_leafs_est: "num_leafs t \<le> 2^height t"
  by (rule Submission.num_leafs_est)

end

Terms and Conditions