I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-IMP.Sec_Type_Expr" "HOL-IMP.Def_Init_Small" begin inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where Skip: "l \<turnstile> SKIP" | Assign: "\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" | Seq: "\<lbrakk> l \<turnstile> c\<^sub>1; l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> c\<^sub>1;;c\<^sub>2" | If: "\<lbrakk> max (sec b) l \<turnstile> c\<^sub>1; max (sec b) l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" | While: "max (sec b) l \<turnstile> c \<Longrightarrow> l \<turnstile> WHILE b DO c" inductive_cases [elim!]: "l \<turnstile> x ::= a" "l \<turnstile> c\<^sub>1;;c\<^sub>2" "l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" "l \<turnstile> WHILE b DO c" lemma anti_mono: "\<lbrakk> l \<turnstile> c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile> c" apply(induction arbitrary: l' rule: sec_type.induct) apply (metis sec_type.intros(1)) apply (metis le_trans sec_type.intros(2)) apply (metis sec_type.intros(3)) apply (metis If le_refl sup_mono sup_nat_def) apply (metis While le_refl sup_mono sup_nat_def) done inductive sec_type2 :: "com \<Rightarrow> level \<Rightarrow> bool" ("(\<turnstile> _ : _)" [0,0] 50) where Skip2: "\<turnstile> SKIP : l" | Assign2: "sec x \<ge> sec a \<Longrightarrow> \<turnstile> x ::= a : sec x" | Seq2: "\<lbrakk> \<turnstile> c\<^sub>1 : l\<^sub>1; \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk> \<Longrightarrow> \<turnstile> c\<^sub>1;;c\<^sub>2 : min l\<^sub>1 l\<^sub>2 " | If2: "\<lbrakk> sec b \<le> min l\<^sub>1 l\<^sub>2; \<turnstile> c\<^sub>1 : l\<^sub>1; \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk> \<Longrightarrow> \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2 : min l\<^sub>1 l\<^sub>2" | While2: "\<lbrakk> sec b \<le> l; \<turnstile> c : l \<rbrakk> \<Longrightarrow> \<turnstile> WHILE b DO c : l" end
theory Submission imports Defs begin theorem bottom_up_impl_top_down: "\<turnstile> c : l \<Longrightarrow> l \<turnstile> c" sorry theorem top_down_impl_bottom_up: "l \<turnstile> c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'" sorry end
theory Check imports Submission begin theorem bottom_up_impl_top_down: "\<turnstile> c : l \<Longrightarrow> l \<turnstile> c" by (rule Submission.bottom_up_impl_top_down) theorem top_down_impl_bottom_up: "l \<turnstile> c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'" by (rule Submission.top_down_impl_bottom_up) end