I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Main begin inductive is_path :: "('v \<Rightarrow> 'v \<Rightarrow> bool) \<Rightarrow> 'v \<Rightarrow> 'v list \<Rightarrow> 'v \<Rightarrow> bool" for E where NilI: "is_path E u [] u" | ConsI: "\<lbrakk> E u v; is_path E v l w \<rbrakk> \<Longrightarrow> is_path E u (u#l) w" fun path :: "('v \<Rightarrow> 'v \<Rightarrow> bool) \<Rightarrow> 'v \<Rightarrow> 'v list \<Rightarrow> 'v \<Rightarrow> bool" where "path E u [] v \<longleftrightarrow> v = u" | "path E u [v] w \<longleftrightarrow> u = v \<and> E v w" | "path E u (x # y # xs) v \<longleftrightarrow> (u = x \<and> E x y \<and> path E y (y # xs) v)" lemma path_Nil: "is_path E u [] v \<longleftrightarrow> u=v" by (auto intro: is_path.intros elim: is_path.cases) lemma path_Cons: "is_path E u (v#p) w \<longleftrightarrow> (\<exists>vh. u=v \<and> E v vh \<and> is_path E vh p w)" by (auto intro: is_path.intros elim: is_path.cases) end
theory Submission imports Defs begin theorem path_distinct: assumes "is_path E u p v" shows "\<exists>p'. distinct p' \<and> is_path E u p' v" using assms proof (induction p rule: length_induct) case step: (1 p) note IH = step.IH note prems = step.prems show ?case proof (cases "distinct p") case True then show ?thesis sorry next case False then show ?thesis sorry qed qed end
theory Check imports Submission begin theorem path_distinct: assumes "is_path E u p v" shows "\<exists>p'. distinct p' \<and> is_path E u p' v" using assms by (rule Submission.path_distinct) end