I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs
imports Main
begin
inductive is_path :: "('v \<Rightarrow> 'v \<Rightarrow> bool) \<Rightarrow> 'v \<Rightarrow> 'v list \<Rightarrow> 'v \<Rightarrow> bool"
for E where
NilI: "is_path E u [] u"
| ConsI: "\<lbrakk> E u v; is_path E v l w \<rbrakk> \<Longrightarrow> is_path E u (u#l) w"
fun path :: "('v \<Rightarrow> 'v \<Rightarrow> bool) \<Rightarrow> 'v \<Rightarrow> 'v list \<Rightarrow> 'v \<Rightarrow> bool" where
"path E u [] v \<longleftrightarrow> v = u" |
"path E u [v] w \<longleftrightarrow> u = v \<and> E v w" |
"path E u (x # y # xs) v \<longleftrightarrow> (u = x \<and> E x y \<and> path E y (y # xs) v)"
lemma path_Nil: "is_path E u [] v \<longleftrightarrow> u=v"
by (auto intro: is_path.intros elim: is_path.cases)
lemma path_Cons: "is_path E u (v#p) w \<longleftrightarrow>
(\<exists>vh. u=v \<and> E v vh \<and> is_path E vh p w)"
by (auto intro: is_path.intros elim: is_path.cases)
end
theory Submission
imports Defs
begin
theorem path_distinct:
assumes "is_path E u p v"
shows "\<exists>p'. distinct p' \<and> is_path E u p' v"
using assms
proof (induction p rule: length_induct)
case step: (1 p)
note IH = step.IH
note prems = step.prems
show ?case proof (cases "distinct p")
case True
then show ?thesis sorry
next
case False
then show ?thesis sorry
qed
qed
end
theory Check imports Submission begin theorem path_distinct: assumes "is_path E u p v" shows "\<exists>p'. distinct p' \<and> is_path E u p' v" using assms by (rule Submission.path_distinct) end