I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Main begin end
theory Submission imports Defs begin context fixes f :: "'a set \<Rightarrow> 'a set" and x\<^sub>0 :: "'a set" assumes "mono f" and post_fixpoint: "x\<^sub>0 \<subseteq> f x\<^sub>0" begin theorem postfix_step: "\<Union> {(f^^i)(x\<^sub>0) | i :: nat. True} \<subseteq> \<Union> {(f^^(Suc i))(x\<^sub>0) | i :: nat. True}" sorry end context fixes f :: "'a set \<Rightarrow> 'a set" assumes continuous: "\<And>X. X\<noteq>{} \<Longrightarrow> f (\<Union>X) = \<Union>(f ` X)" begin theorem mono: "x \<subseteq> y \<Longrightarrow> f x \<subseteq> f y" sorry lemma lfp_fold: "f (lfp f) = lfp f" using lfp_unfold mono unfolding mono_def by blast theorem lfp_ge: "\<Union>{(f^^i) {} | i. True} \<subseteq> lfp f" sorry theorem lfp_le: "lfp f \<subseteq> \<Union>{(f^^i) {} | i. True}" (is "_ \<subseteq> \<Union>?S") sorry corollary "lfp f = \<Union>{(f^^i) {} | i. True}" using lfp_le lfp_ge .. end end
theory Check imports Submission begin context fixes f :: "'a set \<Rightarrow> 'a set" and x\<^sub>0 :: "'a set" assumes "mono f" and post_fixpoint: "x\<^sub>0 \<subseteq> f x\<^sub>0" begin theorem postfix_step: "\<Union> {(f^^i)(x\<^sub>0) | i :: nat. True} \<subseteq> \<Union> {(f^^(Suc i))(x\<^sub>0) | i :: nat. True}" using \<open>mono f\<close> post_fixpoint by (rule Submission.postfix_step) end context fixes f :: "'a set \<Rightarrow> 'a set" assumes continuous: "\<And>X. X\<noteq>{} \<Longrightarrow> f (\<Union>X) = \<Union>(f ` X)" begin theorem mono: "x \<subseteq> y \<Longrightarrow> f x \<subseteq> f y" using continuous by (rule Submission.mono) theorem lfp_ge: "\<Union>{(f^^i) {} | i. True} \<subseteq> lfp f" using continuous by (rule Submission.lfp_ge) theorem lfp_le: "lfp f \<subseteq> \<Union>{(f^^i) {} | i. True}" (is "_ \<subseteq> \<Union>?S") using continuous by (rule Submission.lfp_le) end end