I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-IMP.Small_Step" begin end
theory Submission imports Defs begin type_synonym ('q,'l) lts = "'q \<Rightarrow> 'l \<Rightarrow> 'q \<Rightarrow> bool" inductive word :: "('q,'l) lts \<Rightarrow> 'q \<Rightarrow> 'l list \<Rightarrow> 'q \<Rightarrow> bool" for \<delta> where empty: "word \<delta> q [] q" | prepend: "\<lbrakk>\<delta> q l p; word \<delta> p ls r\<rbrakk> \<Longrightarrow> word \<delta> q (l#ls) r" type_synonym effect = "state \<rightharpoonup> state" type_synonym 'q cfg = "('q,effect) lts" fun eff_list :: "effect list \<Rightarrow> state \<rightharpoonup> state" where "eff_list _ _ = undefined" inductive cfg :: "com cfg" where cfg_assign: "cfg (x ::= a) (\<lambda>s. Some (s(x:=aval a s))) (SKIP)" | cfg_Seq2: "cfg c1 e c1' \<Longrightarrow> cfg (c1;;c2) e (c1';;c2)" theorem eq_step: "(c,s) \<rightarrow> (c',s') \<longleftrightarrow> (\<exists>e. cfg c e c' \<and> e s = Some s')" sorry theorem eq_path: "(c,s) \<rightarrow>* (c',s') \<longleftrightarrow> (\<exists>\<pi>. word cfg c \<pi> c' \<and> eff_list \<pi> s = Some s')" sorry end
theory Check imports Submission begin theorem eq_step: "(c,s) \<rightarrow> (c',s') \<longleftrightarrow> (\<exists>e. cfg c e c' \<and> e s = Some s')" by (rule Submission.eq_step) theorem eq_path: "(c,s) \<rightarrow>* (c',s') \<longleftrightarrow> (\<exists>\<pi>. word cfg c \<pi> c' \<and> eff_list \<pi> s = Some s')" by (rule Submission.eq_path) end