Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Homework 05

This task corresponds to the homework of sheet 5. Deadline: 20.11.2018, 10:00 am.

Resources

Download Files

Definitions File

theory Defs
imports "HOL-IMP.Small_Step"
begin

end

Template File

theory Submission
  imports Defs
begin

type_synonym ('q,'l) lts = "'q \<Rightarrow> 'l \<Rightarrow> 'q \<Rightarrow> bool"

inductive word :: "('q,'l) lts \<Rightarrow> 'q \<Rightarrow> 'l list \<Rightarrow> 'q \<Rightarrow> bool" for \<delta> where
  empty: "word \<delta> q [] q"
| prepend: "\<lbrakk>\<delta> q l p; word \<delta> p ls r\<rbrakk> \<Longrightarrow> word \<delta> q (l#ls) r"

type_synonym effect = "state \<rightharpoonup> state"
type_synonym 'q cfg = "('q,effect) lts"

fun eff_list :: "effect list \<Rightarrow> state \<rightharpoonup> state" where
  "eff_list _ _ = undefined"

inductive cfg :: "com cfg" where
  cfg_assign: "cfg (x ::= a) (\<lambda>s. Some (s(x:=aval a s))) (SKIP)"
| cfg_Seq2:   "cfg c1 e c1' \<Longrightarrow> cfg (c1;;c2) e (c1';;c2)"

theorem eq_step: "(c,s) \<rightarrow> (c',s') \<longleftrightarrow> (\<exists>e. cfg c e c' \<and> e s = Some s')"
  sorry

theorem eq_path: "(c,s) \<rightarrow>* (c',s') \<longleftrightarrow> (\<exists>\<pi>. word cfg c \<pi> c' \<and> eff_list \<pi> s = Some s')"
  sorry

end

Check File

theory Check
  imports Submission
begin

theorem eq_step: "(c,s) \<rightarrow> (c',s') \<longleftrightarrow> (\<exists>e. cfg c e c' \<and> e s = Some s')"
  by (rule Submission.eq_step)

theorem eq_path: "(c,s) \<rightarrow>* (c',s') \<longleftrightarrow> (\<exists>\<pi>. word cfg c \<pi> c' \<and> eff_list \<pi> s = Some s')"
  by (rule Submission.eq_path)

end

Terms and Conditions