I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "IMP2.VCG" begin fun factorial :: "int \<Rightarrow> int" where "factorial i = (if i \<le> 0 then 1 else i * factorial (i - 1))" fun fib :: "int \<Rightarrow> int" where "fib i = (if i \<le> 0 then 0 else if i = 1 then 1 else fib (i - 2) + fib (i - 1))" lemma fib_simps[simp]: "i \<le> 0 \<Longrightarrow> fib i = 0" "i = 1 \<Longrightarrow> fib i = 1" "i > 1 \<Longrightarrow> fib i = fib (i - 2) + fib (i - 1)" by simp+ lemmas [simp del] = fib.simps end
theory Submission imports Defs begin program_spec factorial_prog assumes "n \<ge> 0" ensures "a = factorial n\<^sub>0" defines \<open> a = 1; i = 1; while (i \<le> n) @variant\<open>nat undefined\<close> @invariant\<open>undefined :: bool\<close> { a = a * i; i = i + 1 } \<close> sorry program_spec fib_prog assumes "n \<ge> 0" ensures "a = fib n" defines \<open> a = 0; b = 1; i = 0; while (i < n) @variant\<open>nat undefined\<close> @invariant\<open>undefined :: bool\<close> { c = b; b = a + b; a = c; i = i + 1 } \<close> sorry program_spec fib_prog' assumes True ensures "a = fib n\<^sub>0" defines \<open> a = 0; b = 1; i = 0; while (i < n) @variant\<open>nat undefined\<close> @invariant\<open>undefined :: bool\<close> { c = b; b = a + b; a = c; i = i + 1 } \<close> sorry fun lhsv :: "com \<Rightarrow> vname set" where "lhsv _ = undefined" theorem wp_strengthen_modset: "wp c Q s \<Longrightarrow> wp c (\<lambda>s'. Q s' \<and> (\<forall>x. x\<notin>lhsv c \<longrightarrow> s' x = s x)) s" sorry end
theory Check imports Submission begin theorem factorial_prog_correct: "HT (\<lambda>\<ss>. VAR \<ss> ''n'' ((\<le>) 0)) factorial_prog (\<lambda>\<ss>\<^sub>0. VAR \<ss>\<^sub>0 ''n'' (\<lambda>n\<^sub>0 \<ss>. VAR \<ss> ''a'' (\<lambda>a. a = factorial n\<^sub>0)))" by (rule Submission.factorial_prog_spec) theorem fib_prog_correct: "HT (\<lambda>\<ss>. VAR \<ss> ''n'' ((\<le>) 0)) fib_prog (\<lambda>\<ss>\<^sub>0 \<ss>. VAR \<ss> ''n'' (\<lambda>n. VAR \<ss> ''a'' (\<lambda>a. a = fib n)))" by (rule Submission.fib_prog_spec) theorem fib_prog'_correct: "HT (\<lambda>\<ss>. True) fib_prog' (\<lambda>\<ss>\<^sub>0. VAR \<ss>\<^sub>0 ''n'' (\<lambda>n\<^sub>0 \<ss>. VAR \<ss> ''a'' (\<lambda>a. a = fib n\<^sub>0)))" by (rule Submission.fib_prog'_spec) theorem wp_strengthen_modset: "wp c Q s \<Longrightarrow> wp c (\<lambda>s'. Q s' \<and> (\<forall>x. x\<notin>lhsv c \<longrightarrow> s' x = s x)) s" by (rule Submission.wp_strengthen_modset) end