I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-IMP.AExp" "HOL-Library.List_Lexorder" "HOL-Library.Char_ord" "HOL-IMP.Star" begin declare [[names_short]] datatype action = Up vname \<comment> \<open>Increment\<close> | Down vname \<comment> \<open>Decrement\<close> | Other \<comment> \<open>Unrelated operation\<close> type_synonym config = "action list \<times> action list \<times> state" datatype label = P1 action | P2 action fun well_formed_aux :: "vname set \<Rightarrow> action list \<Rightarrow> bool" where "well_formed_aux A (Down x#l) \<longleftrightarrow> well_formed_aux (insert x A) l \<and> (\<forall>y\<in>A. x>y)" | "well_formed_aux A (Up x#l) \<longleftrightarrow> well_formed_aux (A-{x}) l \<and> x\<in>A" | "well_formed_aux A (Other#l) \<longleftrightarrow> well_formed_aux A l" | "well_formed_aux A [] \<longleftrightarrow> A={}" abbreviation "well_formed l \<equiv> well_formed_aux {} l" abbreviation init :: state where "init \<equiv> \<lambda>_. 1" \<comment> \<open>Initial state\<close> consts exec :: "action \<Rightarrow> state \<Rightarrow> state \<Rightarrow> bool" consts step :: "config \<Rightarrow> label \<Rightarrow> config \<Rightarrow> bool" end
theory Submission imports Defs begin inductive exec :: "action \<Rightarrow> state \<Rightarrow> state \<Rightarrow> bool" type_synonym config = "action list \<times> action list \<times> state" inductive step :: "config \<Rightarrow> label \<Rightarrow> config \<Rightarrow> bool" lemma step_shift: assumes "step c1 (P1 (Down x)) c2" and "step c2 (P2 a) c3" shows "\<exists>ch. step c1 (P2 a) ch \<and> step ch (P1 (Down x)) c3" sorry fun final where "final ([],[],_) \<longleftrightarrow> True" | "final _ \<longleftrightarrow> False" definition "deadlocked c \<equiv> \<not>final c \<and> (\<forall>c' a. \<not>step c a c')" abbreviation "step' c c' \<equiv> \<exists>a. step c a c'" theorem deadlock_freedom: assumes WF1: "well_formed l1" and WF2: "well_formed l2" and STEPS: "star step' (l1,l2,init) c'" shows "\<not>deadlocked c'" sorry end
theory Check imports Submission begin lemma step_shift: "(step c1 (P1 (Down x)) c2) \<Longrightarrow> (step c2 (P2 a) c3) \<Longrightarrow> \<exists>ch. step c1 (P2 a) ch \<and> step ch (P1 (Down x)) c3" by (rule Submission.step_shift) theorem deadlock_freedom: "(well_formed l1) \<Longrightarrow> (well_formed l2) \<Longrightarrow> (star step' (l1,l2,init) c') \<Longrightarrow> \<not>deadlocked c'" by (rule Submission.deadlock_freedom) end