I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Main begin type_synonym intervals = "(nat*nat) list" fun inv' :: "nat \<Rightarrow> intervals \<Rightarrow> bool" where "inv' x [] \<longleftrightarrow> True" | "inv' x ((a,b)#is) \<longleftrightarrow> (x\<le>a \<and> a\<le>b \<and> inv' (Suc (Suc b)) is)" definition inv where "inv \<equiv> inv' 0" fun set_of :: "intervals => nat set" where "set_of [] = {}" | "set_of ((a,b)#is) = {a..b} \<union> set_of is" end
theory Submission imports Defs begin lemma inv'_mono: "inv' n is \<Longrightarrow> m\<le>n \<Longrightarrow> inv' m is" by (induction m "is" rule: inv'.induct) auto fun addi :: "nat \<Rightarrow> nat \<Rightarrow> intervals \<Rightarrow> intervals" where "addi _ = undefined" lemma addi_correct: assumes "inv is" "i\<le>j" shows "inv (addi i j is)" "set_of (addi i j is) = {i..j} \<union> (set_of is)" sorry end
theory Check imports Submission begin lemma addi_correct: assumes "inv is" "i\<le>j" shows "inv (addi i j is)" "set_of (addi i j is) = {i..j} \<union> (set_of is)" by (rule addi_correct[OF assms])+ end