###### Cookies disclaimer

Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

# Week 8 bonus 1

Week 8 bonus 1

## Resources

Download Files

### Definitions File

```theory Defs
imports Main
begin

type_synonym intervals = "(nat*nat) list"

fun inv' :: "nat \<Rightarrow> intervals \<Rightarrow> bool" where
"inv' x [] \<longleftrightarrow> True"
| "inv' x ((a,b)#is) \<longleftrightarrow> (x\<le>a \<and> a\<le>b \<and> inv' (Suc (Suc b)) is)"

definition inv where "inv \<equiv> inv' 0"

fun set_of :: "intervals => nat set"
where
"set_of [] = {}"
| "set_of ((a,b)#is) = {a..b} \<union> set_of is"

end```

### Template File

```theory Submission
imports Defs
begin

lemma inv'_mono: "inv' n is \<Longrightarrow> m\<le>n \<Longrightarrow> inv' m is"
by (induction m "is" rule: inv'.induct) auto

fun addi :: "nat \<Rightarrow> nat \<Rightarrow> intervals \<Rightarrow> intervals" where
"addi _ = undefined"

lemma addi_correct:
assumes "inv is" "i\<le>j"
shows "inv (addi i j is)" "set_of (addi i j is) = {i..j} \<union> (set_of is)"
sorry

end```

### Check File

```theory Check
imports Submission
begin

lemma addi_correct:
assumes "inv is" "i\<le>j"
shows "inv (addi i j is)" "set_of (addi i j is) = {i..j} \<union> (set_of is)"
by (rule addi_correct[OF assms])+

end```

Terms and Conditions