I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-IMP.Big_Step" begin datatype entry = Unchanged ("'_'_'_'_'_'_'_'_") | V "(int\<times>int) set" unbundle lattice_syntax definition chain :: "(nat \<Rightarrow> 'a::complete_lattice) \<Rightarrow> bool" where "chain C \<longleftrightarrow> (\<forall>n. C n \<le> C (Suc n))" definition continuous :: "('a::complete_lattice \<Rightarrow> 'b::complete_lattice) \<Rightarrow> bool" where "continuous f \<longleftrightarrow> (\<forall>C. chain C \<longrightarrow> f (\<Squnion> (range C)) = \<Squnion> (f ` range C))" lemma continuousD: "\<lbrakk>continuous f; chain C\<rbrakk> \<Longrightarrow> f (\<Squnion> (range C)) = \<Squnion> (f ` range C)" unfolding continuous_def by auto consts A\<^sub>0 :: "entry list" consts A\<^sub>1 :: "entry list" consts A\<^sub>2 :: "entry list" consts A\<^sub>3 :: "entry list" consts A\<^sub>4 :: "entry list" consts A\<^sub>5 :: "entry list" consts A\<^sub>6 :: "entry list" end
theory Submission imports Defs begin definition A\<^sub>0 :: "entry list" where "A\<^sub>0 _ = undefined" definition A\<^sub>1 :: "entry list" where "A\<^sub>1 _ = undefined" definition A\<^sub>2 :: "entry list" where "A\<^sub>2 _ = undefined" definition A\<^sub>3 :: "entry list" where "A\<^sub>3 _ = undefined" definition A\<^sub>4 :: "entry list" where "A\<^sub>4 _ = undefined" definition A\<^sub>5 :: "entry list" where "A\<^sub>5 _ = undefined" definition A\<^sub>6 :: "entry list" where "A\<^sub>6 _ = undefined" lemma cont_imp_mono: fixes f :: "'a::complete_lattice \<Rightarrow> 'b::complete_lattice" assumes "continuous f" shows "mono f" sorry thm mono_def monoI monoD theorem kleene_lfp: fixes f :: "'a::complete_lattice \<Rightarrow> 'a" assumes CONT: "continuous f" shows "lfp f = \<Squnion> (range (\<lambda>i. (f^^i) \<bottom>))" proof - txt \<open> We propose a proof structure here, however, you may deviate from this and use your own proof structure: \<close> let ?C = "\<lambda>i. (f^^i) \<bottom>" note MONO=cont_imp_mono[OF CONT] have CHAIN: "chain ?C" sorry qed show ?thesis proof (rule antisym) show "\<Squnion> (range ?C) \<le> lfp f" next show "lfp f \<le> Sup (range ?C)" qed qed thm lfp_unfold lfp_lowerbound Sup_subset_mono range_eqI end
theory Check imports Submission begin lemma cont_imp_mono: "\<And> f :: 'a::complete_lattice \<Rightarrow> 'b::complete_lattice. (continuous f) \<Longrightarrow> mono f" by (rule Submission.cont_imp_mono) theorem kleene_lfp: "\<And> f :: 'a::complete_lattice \<Rightarrow> 'a. (continuous f) \<Longrightarrow> lfp f = \<Squnion> (range (\<lambda>i. (f^^i) \<bottom>))" by (rule Submission.kleene_lfp) end