Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Homework 2

This is the task corresponding to homework 2.


Download Files

Definitions File

theory Defs
  imports "HOL-IMP.AExp" "HOL-IMP.BExp"

declare [[names_short]]
lemmas [simp] = algebra_simps

datatype aexp = N int | V vname | Plus aexp aexp | Mult int aexp

fun aval :: "aexp \<Rightarrow> state \<Rightarrow> val" where
"aval (N n) s = n" |
"aval (V x) s = s x" |
"aval (Plus a\<^sub>1 a\<^sub>2) s = aval a\<^sub>1 s + aval a\<^sub>2 s" |
"aval (Mult i a) s = i * aval a s"

consts rlenc :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> ('a \<times> nat) list"

consts rldec :: "('a \<times> nat) list \<Rightarrow> 'a list"

consts normal :: "aexp \<Rightarrow> bool"

consts normalize :: "aexp \<Rightarrow> aexp"


Template File

theory Submission
  imports Defs

fun rlenc :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> ('a \<times> nat) list"  where
  "rlenc _ = undefined"

value "replicate (3::nat) (1::nat) = [1,1,1]"

value "rlenc 0 0 ([1,3,3,8] :: int list) = [(0,0),(1,1),(3,2),(8,1)]"
value "rlenc 1 0 ([3,4,5] :: int list) = [(1,0),(3,1),(4,1),(5,1)]"

fun rldec :: "('a \<times> nat) list \<Rightarrow> 'a list"  where
  "rldec _ = undefined"

theorem enc_dec: "rldec (rlenc a 0 l) = l"

fun normal :: "aexp \<Rightarrow> bool"  where
  "normal _ = undefined"

fun normalize :: "aexp \<Rightarrow> aexp"  where
  "normalize _ = undefined"

theorem semantics_unchanged: "aval (normalize a) s = aval a s"

theorem normalize_normalizes: "normal (normalize a)"


Check File

theory Check
  imports Submission

theorem enc_dec: "rldec (rlenc a 0 l) = l"
  by (rule Submission.enc_dec)

theorem semantics_unchanged: "aval (normalize a) s = aval a s"
  by (rule Submission.semantics_unchanged)

theorem normalize_normalizes: "normal (normalize a)"
  by (rule Submission.normalize_normalizes)


Terms and Conditions